# Discrete Random Variables

Posted by Beetle B. on Thu 18 May 2017

## Random Variables

A discrete random variable is one whose set of possible values is countable.

## Probability Distributions for Discrete Random Variables

A probability mass function of a discrete rv is $$p(x)=P(X=x)$$ that satisfies $$0\le p(x)\le1$$ and $$\sum_{x}p(x)=1$$.

The cumulative distribution function (cdf) $$F(x)$$ of a rv $$X$$ with pmf $$p(x)$$ is given by $$F(x)=P(X\le x)=\sum_{y\le x}p(y)$$

Note that the cdf is not continuous for a discrete distribution.

To get the pmf from the cdf: $$P(a\le x\le b)=F(b)-F(a^{-})$$ where $$a^{-}$$ is the largest value of $$x$$ not equal to $$a$$.

And $$P(X=a)=F(a)-F(a^{-})$$

## Expected Values of Discrete Random Variables

The expected value of a discrete distribution: $$E(X)=\mu_{X}=\sum_{x\in D}xp(x)$$ Beware of the word expected, as its value may not be an allowed value for $$x$$.

Any distribution that has a large amount of probability far from $$\mu$$ is said to have a heavy tail. This is trivially true when $$\mu$$ is infinite, but it need not be infinite to have a heavy tail. Be careful when making inferences of such distributions!

The variance of a distribution:

\begin{equation*} V(X)=\sigma_{X}^{2}=\sum_{x\in D}(x-\mu)^{2}p(x)=E(X^{2})-[E(X)]^{2} \end{equation*}

Let $$h(x)$$ be a function of $$X$$. $$E[h(x)]=\sum_{x\in D}h(x)p(x)$$

The variance of $$h(x)$$ is $$V[h(x)]=\sum_{x\in D}\{h(x)-E[h(x)]\}^{2}p(x)$$

Linear scaling of $$X$$:

\begin{equation*} E(aX+b)=a\mu_{X}+b \end{equation*}
\begin{equation*} V(aX+b)=a^{2}\sigma_{X}^{2} \end{equation*}

The mode of a discrete distribution is the value at which the function is maximized.

## Standardized Variables

If we define $$Y=\frac{X-\mu_{X}}{\sigma_{X}}$$, then $$\mu_{Y}=0,\sigma_{Y}=1$$.

## Independence of Random Variables

If $$X$$ and $$Y$$ are random variables, then they are independent if and only if $$P\{X=i,Y=j\}=p_{X}(i)p_{Y}(j)\ \forall i,j$$

## Markov Inequality

Let $$Y$$ be a nonnegative random variable. Then for $$c\ge0$$:

\begin{equation*} P(Y\ge c)\le\frac{\mu_{Y}}{c} \end{equation*}

Proof Sketch:

Let Y take on values $$u_{i}\ge0$$ Note that:

\begin{equation*} \mu_{Y}=\sum_{i}u_{i}P(u_{i}) \end{equation*}

Split the sum for $$0<u_{i}<c$$ and $$u_{i}\ge c$$ and use these inequalities.

## Chebyshev’s Inequality

Chebyshev’s Inequality: If $$k\ge 1$$, then:

\begin{equation*} P(|x-\mu|\ge k\sigma)\le\frac{1}{k^{2}} \end{equation*}

This gives an upper bound for being an integral number of $$\sigma$$s from the mean.

This is true for any discrete distribution. Because of its generality, it is not a tight bound.

Proof sketch:

Let $$Y=\frac{X-\mu_{x}}{k\sigma_{X}}$$. Then $$\mu_{Y}=0,\sigma_{Y}=1/k$$.

Trivially, we know that:

\begin{equation*} \sum_{|y|\ge1}y^{2}p(y)\le\sum_{y}y^{2}p(y)=\sigma_{Y}^{2}=\frac{1}{k^{2}} \end{equation*}

Now the important thing to show is that $$p(|y|\ge1)=p(|X-\mu_{X}|\ge k\sigma_{X})$$. This is not hard.

Looking at the sum again, note that

\begin{equation*} \sum_{|y|\ge1}p(y)\le\sum_{|y|\ge1}y^{2}p(y)\le\frac{1}{k^{2}} \end{equation*}

So each $$p(y)$$ must be less than $$1/k^{2}$$ for all $$y^{2}\ge1$$. This concludes the proof.

Another way to prove it is to use Markov’s Inequality with $$Y=|X-\mu|^{2}$$ and $$c=k^{2}\sigma^{2}$$